1
0
Fork 0
forked from anton/matekasse
matekasse/venv/lib/python3.11/site-packages/flask/scaffold.py

924 lines
34 KiB
Python
Raw Normal View History

2023-07-28 21:30:45 +00:00
from __future__ import annotations
import importlib.util
import os
import pathlib
import pkgutil
import sys
import typing as t
from collections import defaultdict
from datetime import timedelta
from functools import update_wrapper
from jinja2 import FileSystemLoader
from werkzeug.exceptions import default_exceptions
from werkzeug.exceptions import HTTPException
from werkzeug.utils import cached_property
from . import typing as ft
from .cli import AppGroup
from .globals import current_app
from .helpers import get_root_path
from .helpers import send_from_directory
from .templating import _default_template_ctx_processor
if t.TYPE_CHECKING: # pragma: no cover
from .wrappers import Response
# a singleton sentinel value for parameter defaults
_sentinel = object()
F = t.TypeVar("F", bound=t.Callable[..., t.Any])
T_after_request = t.TypeVar("T_after_request", bound=ft.AfterRequestCallable)
T_before_request = t.TypeVar("T_before_request", bound=ft.BeforeRequestCallable)
T_error_handler = t.TypeVar("T_error_handler", bound=ft.ErrorHandlerCallable)
T_teardown = t.TypeVar("T_teardown", bound=ft.TeardownCallable)
T_template_context_processor = t.TypeVar(
"T_template_context_processor", bound=ft.TemplateContextProcessorCallable
)
T_url_defaults = t.TypeVar("T_url_defaults", bound=ft.URLDefaultCallable)
T_url_value_preprocessor = t.TypeVar(
"T_url_value_preprocessor", bound=ft.URLValuePreprocessorCallable
)
T_route = t.TypeVar("T_route", bound=ft.RouteCallable)
def setupmethod(f: F) -> F:
f_name = f.__name__
def wrapper_func(self, *args: t.Any, **kwargs: t.Any) -> t.Any:
self._check_setup_finished(f_name)
return f(self, *args, **kwargs)
return t.cast(F, update_wrapper(wrapper_func, f))
class Scaffold:
"""Common behavior shared between :class:`~flask.Flask` and
:class:`~flask.blueprints.Blueprint`.
:param import_name: The import name of the module where this object
is defined. Usually :attr:`__name__` should be used.
:param static_folder: Path to a folder of static files to serve.
If this is set, a static route will be added.
:param static_url_path: URL prefix for the static route.
:param template_folder: Path to a folder containing template files.
for rendering. If this is set, a Jinja loader will be added.
:param root_path: The path that static, template, and resource files
are relative to. Typically not set, it is discovered based on
the ``import_name``.
.. versionadded:: 2.0
"""
name: str
_static_folder: str | None = None
_static_url_path: str | None = None
def __init__(
self,
import_name: str,
static_folder: str | os.PathLike | None = None,
static_url_path: str | None = None,
template_folder: str | os.PathLike | None = None,
root_path: str | None = None,
):
#: The name of the package or module that this object belongs
#: to. Do not change this once it is set by the constructor.
self.import_name = import_name
self.static_folder = static_folder # type: ignore
self.static_url_path = static_url_path
#: The path to the templates folder, relative to
#: :attr:`root_path`, to add to the template loader. ``None`` if
#: templates should not be added.
self.template_folder = template_folder
if root_path is None:
root_path = get_root_path(self.import_name)
#: Absolute path to the package on the filesystem. Used to look
#: up resources contained in the package.
self.root_path = root_path
#: The Click command group for registering CLI commands for this
#: object. The commands are available from the ``flask`` command
#: once the application has been discovered and blueprints have
#: been registered.
self.cli = AppGroup()
#: A dictionary mapping endpoint names to view functions.
#:
#: To register a view function, use the :meth:`route` decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.view_functions: dict[str, t.Callable] = {}
#: A data structure of registered error handlers, in the format
#: ``{scope: {code: {class: handler}}}``. The ``scope`` key is
#: the name of a blueprint the handlers are active for, or
#: ``None`` for all requests. The ``code`` key is the HTTP
#: status code for ``HTTPException``, or ``None`` for
#: other exceptions. The innermost dictionary maps exception
#: classes to handler functions.
#:
#: To register an error handler, use the :meth:`errorhandler`
#: decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.error_handler_spec: dict[
ft.AppOrBlueprintKey,
dict[int | None, dict[type[Exception], ft.ErrorHandlerCallable]],
] = defaultdict(lambda: defaultdict(dict))
#: A data structure of functions to call at the beginning of
#: each request, in the format ``{scope: [functions]}``. The
#: ``scope`` key is the name of a blueprint the functions are
#: active for, or ``None`` for all requests.
#:
#: To register a function, use the :meth:`before_request`
#: decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.before_request_funcs: dict[
ft.AppOrBlueprintKey, list[ft.BeforeRequestCallable]
] = defaultdict(list)
#: A data structure of functions to call at the end of each
#: request, in the format ``{scope: [functions]}``. The
#: ``scope`` key is the name of a blueprint the functions are
#: active for, or ``None`` for all requests.
#:
#: To register a function, use the :meth:`after_request`
#: decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.after_request_funcs: dict[
ft.AppOrBlueprintKey, list[ft.AfterRequestCallable]
] = defaultdict(list)
#: A data structure of functions to call at the end of each
#: request even if an exception is raised, in the format
#: ``{scope: [functions]}``. The ``scope`` key is the name of a
#: blueprint the functions are active for, or ``None`` for all
#: requests.
#:
#: To register a function, use the :meth:`teardown_request`
#: decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.teardown_request_funcs: dict[
ft.AppOrBlueprintKey, list[ft.TeardownCallable]
] = defaultdict(list)
#: A data structure of functions to call to pass extra context
#: values when rendering templates, in the format
#: ``{scope: [functions]}``. The ``scope`` key is the name of a
#: blueprint the functions are active for, or ``None`` for all
#: requests.
#:
#: To register a function, use the :meth:`context_processor`
#: decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.template_context_processors: dict[
ft.AppOrBlueprintKey, list[ft.TemplateContextProcessorCallable]
] = defaultdict(list, {None: [_default_template_ctx_processor]})
#: A data structure of functions to call to modify the keyword
#: arguments passed to the view function, in the format
#: ``{scope: [functions]}``. The ``scope`` key is the name of a
#: blueprint the functions are active for, or ``None`` for all
#: requests.
#:
#: To register a function, use the
#: :meth:`url_value_preprocessor` decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.url_value_preprocessors: dict[
ft.AppOrBlueprintKey,
list[ft.URLValuePreprocessorCallable],
] = defaultdict(list)
#: A data structure of functions to call to modify the keyword
#: arguments when generating URLs, in the format
#: ``{scope: [functions]}``. The ``scope`` key is the name of a
#: blueprint the functions are active for, or ``None`` for all
#: requests.
#:
#: To register a function, use the :meth:`url_defaults`
#: decorator.
#:
#: This data structure is internal. It should not be modified
#: directly and its format may change at any time.
self.url_default_functions: dict[
ft.AppOrBlueprintKey, list[ft.URLDefaultCallable]
] = defaultdict(list)
def __repr__(self) -> str:
return f"<{type(self).__name__} {self.name!r}>"
def _check_setup_finished(self, f_name: str) -> None:
raise NotImplementedError
@property
def static_folder(self) -> str | None:
"""The absolute path to the configured static folder. ``None``
if no static folder is set.
"""
if self._static_folder is not None:
return os.path.join(self.root_path, self._static_folder)
else:
return None
@static_folder.setter
def static_folder(self, value: str | os.PathLike | None) -> None:
if value is not None:
value = os.fspath(value).rstrip(r"\/")
self._static_folder = value
@property
def has_static_folder(self) -> bool:
"""``True`` if :attr:`static_folder` is set.
.. versionadded:: 0.5
"""
return self.static_folder is not None
@property
def static_url_path(self) -> str | None:
"""The URL prefix that the static route will be accessible from.
If it was not configured during init, it is derived from
:attr:`static_folder`.
"""
if self._static_url_path is not None:
return self._static_url_path
if self.static_folder is not None:
basename = os.path.basename(self.static_folder)
return f"/{basename}".rstrip("/")
return None
@static_url_path.setter
def static_url_path(self, value: str | None) -> None:
if value is not None:
value = value.rstrip("/")
self._static_url_path = value
def get_send_file_max_age(self, filename: str | None) -> int | None:
"""Used by :func:`send_file` to determine the ``max_age`` cache
value for a given file path if it wasn't passed.
By default, this returns :data:`SEND_FILE_MAX_AGE_DEFAULT` from
the configuration of :data:`~flask.current_app`. This defaults
to ``None``, which tells the browser to use conditional requests
instead of a timed cache, which is usually preferable.
.. versionchanged:: 2.0
The default configuration is ``None`` instead of 12 hours.
.. versionadded:: 0.9
"""
value = current_app.config["SEND_FILE_MAX_AGE_DEFAULT"]
if value is None:
return None
if isinstance(value, timedelta):
return int(value.total_seconds())
return value
def send_static_file(self, filename: str) -> Response:
"""The view function used to serve files from
:attr:`static_folder`. A route is automatically registered for
this view at :attr:`static_url_path` if :attr:`static_folder` is
set.
.. versionadded:: 0.5
"""
if not self.has_static_folder:
raise RuntimeError("'static_folder' must be set to serve static_files.")
# send_file only knows to call get_send_file_max_age on the app,
# call it here so it works for blueprints too.
max_age = self.get_send_file_max_age(filename)
return send_from_directory(
t.cast(str, self.static_folder), filename, max_age=max_age
)
@cached_property
def jinja_loader(self) -> FileSystemLoader | None:
"""The Jinja loader for this object's templates. By default this
is a class :class:`jinja2.loaders.FileSystemLoader` to
:attr:`template_folder` if it is set.
.. versionadded:: 0.5
"""
if self.template_folder is not None:
return FileSystemLoader(os.path.join(self.root_path, self.template_folder))
else:
return None
def open_resource(self, resource: str, mode: str = "rb") -> t.IO[t.AnyStr]:
"""Open a resource file relative to :attr:`root_path` for
reading.
For example, if the file ``schema.sql`` is next to the file
``app.py`` where the ``Flask`` app is defined, it can be opened
with:
.. code-block:: python
with app.open_resource("schema.sql") as f:
conn.executescript(f.read())
:param resource: Path to the resource relative to
:attr:`root_path`.
:param mode: Open the file in this mode. Only reading is
supported, valid values are "r" (or "rt") and "rb".
"""
if mode not in {"r", "rt", "rb"}:
raise ValueError("Resources can only be opened for reading.")
return open(os.path.join(self.root_path, resource), mode)
def _method_route(
self,
method: str,
rule: str,
options: dict,
) -> t.Callable[[T_route], T_route]:
if "methods" in options:
raise TypeError("Use the 'route' decorator to use the 'methods' argument.")
return self.route(rule, methods=[method], **options)
@setupmethod
def get(self, rule: str, **options: t.Any) -> t.Callable[[T_route], T_route]:
"""Shortcut for :meth:`route` with ``methods=["GET"]``.
.. versionadded:: 2.0
"""
return self._method_route("GET", rule, options)
@setupmethod
def post(self, rule: str, **options: t.Any) -> t.Callable[[T_route], T_route]:
"""Shortcut for :meth:`route` with ``methods=["POST"]``.
.. versionadded:: 2.0
"""
return self._method_route("POST", rule, options)
@setupmethod
def put(self, rule: str, **options: t.Any) -> t.Callable[[T_route], T_route]:
"""Shortcut for :meth:`route` with ``methods=["PUT"]``.
.. versionadded:: 2.0
"""
return self._method_route("PUT", rule, options)
@setupmethod
def delete(self, rule: str, **options: t.Any) -> t.Callable[[T_route], T_route]:
"""Shortcut for :meth:`route` with ``methods=["DELETE"]``.
.. versionadded:: 2.0
"""
return self._method_route("DELETE", rule, options)
@setupmethod
def patch(self, rule: str, **options: t.Any) -> t.Callable[[T_route], T_route]:
"""Shortcut for :meth:`route` with ``methods=["PATCH"]``.
.. versionadded:: 2.0
"""
return self._method_route("PATCH", rule, options)
@setupmethod
def route(self, rule: str, **options: t.Any) -> t.Callable[[T_route], T_route]:
"""Decorate a view function to register it with the given URL
rule and options. Calls :meth:`add_url_rule`, which has more
details about the implementation.
.. code-block:: python
@app.route("/")
def index():
return "Hello, World!"
See :ref:`url-route-registrations`.
The endpoint name for the route defaults to the name of the view
function if the ``endpoint`` parameter isn't passed.
The ``methods`` parameter defaults to ``["GET"]``. ``HEAD`` and
``OPTIONS`` are added automatically.
:param rule: The URL rule string.
:param options: Extra options passed to the
:class:`~werkzeug.routing.Rule` object.
"""
def decorator(f: T_route) -> T_route:
endpoint = options.pop("endpoint", None)
self.add_url_rule(rule, endpoint, f, **options)
return f
return decorator
@setupmethod
def add_url_rule(
self,
rule: str,
endpoint: str | None = None,
view_func: ft.RouteCallable | None = None,
provide_automatic_options: bool | None = None,
**options: t.Any,
) -> None:
"""Register a rule for routing incoming requests and building
URLs. The :meth:`route` decorator is a shortcut to call this
with the ``view_func`` argument. These are equivalent:
.. code-block:: python
@app.route("/")
def index():
...
.. code-block:: python
def index():
...
app.add_url_rule("/", view_func=index)
See :ref:`url-route-registrations`.
The endpoint name for the route defaults to the name of the view
function if the ``endpoint`` parameter isn't passed. An error
will be raised if a function has already been registered for the
endpoint.
The ``methods`` parameter defaults to ``["GET"]``. ``HEAD`` is
always added automatically, and ``OPTIONS`` is added
automatically by default.
``view_func`` does not necessarily need to be passed, but if the
rule should participate in routing an endpoint name must be
associated with a view function at some point with the
:meth:`endpoint` decorator.
.. code-block:: python
app.add_url_rule("/", endpoint="index")
@app.endpoint("index")
def index():
...
If ``view_func`` has a ``required_methods`` attribute, those
methods are added to the passed and automatic methods. If it
has a ``provide_automatic_methods`` attribute, it is used as the
default if the parameter is not passed.
:param rule: The URL rule string.
:param endpoint: The endpoint name to associate with the rule
and view function. Used when routing and building URLs.
Defaults to ``view_func.__name__``.
:param view_func: The view function to associate with the
endpoint name.
:param provide_automatic_options: Add the ``OPTIONS`` method and
respond to ``OPTIONS`` requests automatically.
:param options: Extra options passed to the
:class:`~werkzeug.routing.Rule` object.
"""
raise NotImplementedError
@setupmethod
def endpoint(self, endpoint: str) -> t.Callable[[F], F]:
"""Decorate a view function to register it for the given
endpoint. Used if a rule is added without a ``view_func`` with
:meth:`add_url_rule`.
.. code-block:: python
app.add_url_rule("/ex", endpoint="example")
@app.endpoint("example")
def example():
...
:param endpoint: The endpoint name to associate with the view
function.
"""
def decorator(f: F) -> F:
self.view_functions[endpoint] = f
return f
return decorator
@setupmethod
def before_request(self, f: T_before_request) -> T_before_request:
"""Register a function to run before each request.
For example, this can be used to open a database connection, or
to load the logged in user from the session.
.. code-block:: python
@app.before_request
def load_user():
if "user_id" in session:
g.user = db.session.get(session["user_id"])
The function will be called without any arguments. If it returns
a non-``None`` value, the value is handled as if it was the
return value from the view, and further request handling is
stopped.
This is available on both app and blueprint objects. When used on an app, this
executes before every request. When used on a blueprint, this executes before
every request that the blueprint handles. To register with a blueprint and
execute before every request, use :meth:`.Blueprint.before_app_request`.
"""
self.before_request_funcs.setdefault(None, []).append(f)
return f
@setupmethod
def after_request(self, f: T_after_request) -> T_after_request:
"""Register a function to run after each request to this object.
The function is called with the response object, and must return
a response object. This allows the functions to modify or
replace the response before it is sent.
If a function raises an exception, any remaining
``after_request`` functions will not be called. Therefore, this
should not be used for actions that must execute, such as to
close resources. Use :meth:`teardown_request` for that.
This is available on both app and blueprint objects. When used on an app, this
executes after every request. When used on a blueprint, this executes after
every request that the blueprint handles. To register with a blueprint and
execute after every request, use :meth:`.Blueprint.after_app_request`.
"""
self.after_request_funcs.setdefault(None, []).append(f)
return f
@setupmethod
def teardown_request(self, f: T_teardown) -> T_teardown:
"""Register a function to be called when the request context is
popped. Typically this happens at the end of each request, but
contexts may be pushed manually as well during testing.
.. code-block:: python
with app.test_request_context():
...
When the ``with`` block exits (or ``ctx.pop()`` is called), the
teardown functions are called just before the request context is
made inactive.
When a teardown function was called because of an unhandled
exception it will be passed an error object. If an
:meth:`errorhandler` is registered, it will handle the exception
and the teardown will not receive it.
Teardown functions must avoid raising exceptions. If they
execute code that might fail they must surround that code with a
``try``/``except`` block and log any errors.
The return values of teardown functions are ignored.
This is available on both app and blueprint objects. When used on an app, this
executes after every request. When used on a blueprint, this executes after
every request that the blueprint handles. To register with a blueprint and
execute after every request, use :meth:`.Blueprint.teardown_app_request`.
"""
self.teardown_request_funcs.setdefault(None, []).append(f)
return f
@setupmethod
def context_processor(
self,
f: T_template_context_processor,
) -> T_template_context_processor:
"""Registers a template context processor function. These functions run before
rendering a template. The keys of the returned dict are added as variables
available in the template.
This is available on both app and blueprint objects. When used on an app, this
is called for every rendered template. When used on a blueprint, this is called
for templates rendered from the blueprint's views. To register with a blueprint
and affect every template, use :meth:`.Blueprint.app_context_processor`.
"""
self.template_context_processors[None].append(f)
return f
@setupmethod
def url_value_preprocessor(
self,
f: T_url_value_preprocessor,
) -> T_url_value_preprocessor:
"""Register a URL value preprocessor function for all view
functions in the application. These functions will be called before the
:meth:`before_request` functions.
The function can modify the values captured from the matched url before
they are passed to the view. For example, this can be used to pop a
common language code value and place it in ``g`` rather than pass it to
every view.
The function is passed the endpoint name and values dict. The return
value is ignored.
This is available on both app and blueprint objects. When used on an app, this
is called for every request. When used on a blueprint, this is called for
requests that the blueprint handles. To register with a blueprint and affect
every request, use :meth:`.Blueprint.app_url_value_preprocessor`.
"""
self.url_value_preprocessors[None].append(f)
return f
@setupmethod
def url_defaults(self, f: T_url_defaults) -> T_url_defaults:
"""Callback function for URL defaults for all view functions of the
application. It's called with the endpoint and values and should
update the values passed in place.
This is available on both app and blueprint objects. When used on an app, this
is called for every request. When used on a blueprint, this is called for
requests that the blueprint handles. To register with a blueprint and affect
every request, use :meth:`.Blueprint.app_url_defaults`.
"""
self.url_default_functions[None].append(f)
return f
@setupmethod
def errorhandler(
self, code_or_exception: type[Exception] | int
) -> t.Callable[[T_error_handler], T_error_handler]:
"""Register a function to handle errors by code or exception class.
A decorator that is used to register a function given an
error code. Example::
@app.errorhandler(404)
def page_not_found(error):
return 'This page does not exist', 404
You can also register handlers for arbitrary exceptions::
@app.errorhandler(DatabaseError)
def special_exception_handler(error):
return 'Database connection failed', 500
This is available on both app and blueprint objects. When used on an app, this
can handle errors from every request. When used on a blueprint, this can handle
errors from requests that the blueprint handles. To register with a blueprint
and affect every request, use :meth:`.Blueprint.app_errorhandler`.
.. versionadded:: 0.7
Use :meth:`register_error_handler` instead of modifying
:attr:`error_handler_spec` directly, for application wide error
handlers.
.. versionadded:: 0.7
One can now additionally also register custom exception types
that do not necessarily have to be a subclass of the
:class:`~werkzeug.exceptions.HTTPException` class.
:param code_or_exception: the code as integer for the handler, or
an arbitrary exception
"""
def decorator(f: T_error_handler) -> T_error_handler:
self.register_error_handler(code_or_exception, f)
return f
return decorator
@setupmethod
def register_error_handler(
self,
code_or_exception: type[Exception] | int,
f: ft.ErrorHandlerCallable,
) -> None:
"""Alternative error attach function to the :meth:`errorhandler`
decorator that is more straightforward to use for non decorator
usage.
.. versionadded:: 0.7
"""
exc_class, code = self._get_exc_class_and_code(code_or_exception)
self.error_handler_spec[None][code][exc_class] = f
@staticmethod
def _get_exc_class_and_code(
exc_class_or_code: type[Exception] | int,
) -> tuple[type[Exception], int | None]:
"""Get the exception class being handled. For HTTP status codes
or ``HTTPException`` subclasses, return both the exception and
status code.
:param exc_class_or_code: Any exception class, or an HTTP status
code as an integer.
"""
exc_class: type[Exception]
if isinstance(exc_class_or_code, int):
try:
exc_class = default_exceptions[exc_class_or_code]
except KeyError:
raise ValueError(
f"'{exc_class_or_code}' is not a recognized HTTP"
" error code. Use a subclass of HTTPException with"
" that code instead."
) from None
else:
exc_class = exc_class_or_code
if isinstance(exc_class, Exception):
raise TypeError(
f"{exc_class!r} is an instance, not a class. Handlers"
" can only be registered for Exception classes or HTTP"
" error codes."
)
if not issubclass(exc_class, Exception):
raise ValueError(
f"'{exc_class.__name__}' is not a subclass of Exception."
" Handlers can only be registered for Exception classes"
" or HTTP error codes."
)
if issubclass(exc_class, HTTPException):
return exc_class, exc_class.code
else:
return exc_class, None
def _endpoint_from_view_func(view_func: t.Callable) -> str:
"""Internal helper that returns the default endpoint for a given
function. This always is the function name.
"""
assert view_func is not None, "expected view func if endpoint is not provided."
return view_func.__name__
def _matching_loader_thinks_module_is_package(loader, mod_name):
"""Attempt to figure out if the given name is a package or a module.
:param: loader: The loader that handled the name.
:param mod_name: The name of the package or module.
"""
# Use loader.is_package if it's available.
if hasattr(loader, "is_package"):
return loader.is_package(mod_name)
cls = type(loader)
# NamespaceLoader doesn't implement is_package, but all names it
# loads must be packages.
if cls.__module__ == "_frozen_importlib" and cls.__name__ == "NamespaceLoader":
return True
# Otherwise we need to fail with an error that explains what went
# wrong.
raise AttributeError(
f"'{cls.__name__}.is_package()' must be implemented for PEP 302"
f" import hooks."
)
def _path_is_relative_to(path: pathlib.PurePath, base: str) -> bool:
# Path.is_relative_to doesn't exist until Python 3.9
try:
path.relative_to(base)
return True
except ValueError:
return False
def _find_package_path(import_name):
"""Find the path that contains the package or module."""
root_mod_name, _, _ = import_name.partition(".")
try:
root_spec = importlib.util.find_spec(root_mod_name)
if root_spec is None:
raise ValueError("not found")
# ImportError: the machinery told us it does not exist
# ValueError:
# - the module name was invalid
# - the module name is __main__
# - *we* raised `ValueError` due to `root_spec` being `None`
except (ImportError, ValueError):
pass # handled below
else:
# namespace package
if root_spec.origin in {"namespace", None}:
package_spec = importlib.util.find_spec(import_name)
if package_spec is not None and package_spec.submodule_search_locations:
# Pick the path in the namespace that contains the submodule.
package_path = pathlib.Path(
os.path.commonpath(package_spec.submodule_search_locations)
)
search_locations = (
location
for location in root_spec.submodule_search_locations
if _path_is_relative_to(package_path, location)
)
else:
# Pick the first path.
search_locations = iter(root_spec.submodule_search_locations)
return os.path.dirname(next(search_locations))
# a package (with __init__.py)
elif root_spec.submodule_search_locations:
return os.path.dirname(os.path.dirname(root_spec.origin))
# just a normal module
else:
return os.path.dirname(root_spec.origin)
# we were unable to find the `package_path` using PEP 451 loaders
loader = pkgutil.get_loader(root_mod_name)
if loader is None or root_mod_name == "__main__":
# import name is not found, or interactive/main module
return os.getcwd()
if hasattr(loader, "get_filename"):
filename = loader.get_filename(root_mod_name)
elif hasattr(loader, "archive"):
# zipimporter's loader.archive points to the .egg or .zip file.
filename = loader.archive
else:
# At least one loader is missing both get_filename and archive:
# Google App Engine's HardenedModulesHook, use __file__.
filename = importlib.import_module(root_mod_name).__file__
package_path = os.path.abspath(os.path.dirname(filename))
# If the imported name is a package, filename is currently pointing
# to the root of the package, need to get the current directory.
if _matching_loader_thinks_module_is_package(loader, root_mod_name):
package_path = os.path.dirname(package_path)
return package_path
def find_package(import_name: str):
"""Find the prefix that a package is installed under, and the path
that it would be imported from.
The prefix is the directory containing the standard directory
hierarchy (lib, bin, etc.). If the package is not installed to the
system (:attr:`sys.prefix`) or a virtualenv (``site-packages``),
``None`` is returned.
The path is the entry in :attr:`sys.path` that contains the package
for import. If the package is not installed, it's assumed that the
package was imported from the current working directory.
"""
package_path = _find_package_path(import_name)
py_prefix = os.path.abspath(sys.prefix)
# installed to the system
if _path_is_relative_to(pathlib.PurePath(package_path), py_prefix):
return py_prefix, package_path
site_parent, site_folder = os.path.split(package_path)
# installed to a virtualenv
if site_folder.lower() == "site-packages":
parent, folder = os.path.split(site_parent)
# Windows (prefix/lib/site-packages)
if folder.lower() == "lib":
return parent, package_path
# Unix (prefix/lib/pythonX.Y/site-packages)
if os.path.basename(parent).lower() == "lib":
return os.path.dirname(parent), package_path
# something else (prefix/site-packages)
return site_parent, package_path
# not installed
return None, package_path