1
0
Fork 0
forked from bton/matekasse
matekasse/venv/lib/python3.11/site-packages/cachelib/memcached.py
2023-07-28 23:30:45 +02:00

197 lines
7 KiB
Python

import re
import typing as _t
from time import time
from cachelib.base import BaseCache
_test_memcached_key = re.compile(r"[^\x00-\x21\xff]{1,250}$").match
class MemcachedCache(BaseCache):
"""A cache that uses memcached as backend.
The first argument can either be an object that resembles the API of a
:class:`memcache.Client` or a tuple/list of server addresses. In the
event that a tuple/list is passed, Werkzeug tries to import the best
available memcache library.
This cache looks into the following packages/modules to find bindings for
memcached:
- ``pylibmc``
- ``google.appengine.api.memcached``
- ``memcached``
- ``libmc``
Implementation notes: This cache backend works around some limitations in
memcached to simplify the interface. For example unicode keys are encoded
to utf-8 on the fly. Methods such as :meth:`~BaseCache.get_dict` return
the keys in the same format as passed. Furthermore all get methods
silently ignore key errors to not cause problems when untrusted user data
is passed to the get methods which is often the case in web applications.
:param servers: a list or tuple of server addresses or alternatively
a :class:`memcache.Client` or a compatible client.
:param default_timeout: the default timeout that is used if no timeout is
specified on :meth:`~BaseCache.set`. A timeout of
0 indicates that the cache never expires.
:param key_prefix: a prefix that is added before all keys. This makes it
possible to use the same memcached server for different
applications. Keep in mind that
:meth:`~BaseCache.clear` will also clear keys with a
different prefix.
"""
def __init__(
self,
servers: _t.Any = None,
default_timeout: int = 300,
key_prefix: _t.Optional[str] = None,
):
BaseCache.__init__(self, default_timeout)
if servers is None or isinstance(servers, (list, tuple)):
if servers is None:
servers = ["127.0.0.1:11211"]
self._client = self.import_preferred_memcache_lib(servers)
if self._client is None:
raise RuntimeError("no memcache module found")
else:
# NOTE: servers is actually an already initialized memcache
# client.
self._client = servers
self.key_prefix = key_prefix
def _normalize_key(self, key: str) -> str:
if self.key_prefix:
key = self.key_prefix + key
return key
def _normalize_timeout(self, timeout: _t.Optional[int]) -> int:
timeout = BaseCache._normalize_timeout(self, timeout)
if timeout > 0:
timeout = int(time()) + timeout
return timeout
def get(self, key: str) -> _t.Any:
key = self._normalize_key(key)
# memcached doesn't support keys longer than that. Because often
# checks for so long keys can occur because it's tested from user
# submitted data etc we fail silently for getting.
if _test_memcached_key(key):
return self._client.get(key)
def get_dict(self, *keys: str) -> _t.Dict[str, _t.Any]:
key_mapping = {}
for key in keys:
encoded_key = self._normalize_key(key)
if _test_memcached_key(key):
key_mapping[encoded_key] = key
_keys = list(key_mapping)
d = rv = self._client.get_multi(_keys) # type: _t.Dict[str, _t.Any]
if self.key_prefix:
rv = {}
for key, value in d.items():
rv[key_mapping[key]] = value
if len(rv) < len(keys):
for key in keys:
if key not in rv:
rv[key] = None
return rv
def add(self, key: str, value: _t.Any, timeout: _t.Optional[int] = None) -> bool:
key = self._normalize_key(key)
timeout = self._normalize_timeout(timeout)
return bool(self._client.add(key, value, timeout))
def set(
self, key: str, value: _t.Any, timeout: _t.Optional[int] = None
) -> _t.Optional[bool]:
key = self._normalize_key(key)
timeout = self._normalize_timeout(timeout)
return bool(self._client.set(key, value, timeout))
def get_many(self, *keys: str) -> _t.List[_t.Any]:
d = self.get_dict(*keys)
return [d[key] for key in keys]
def set_many(
self, mapping: _t.Dict[str, _t.Any], timeout: _t.Optional[int] = None
) -> _t.List[_t.Any]:
new_mapping = {}
for key, value in mapping.items():
key = self._normalize_key(key)
new_mapping[key] = value
timeout = self._normalize_timeout(timeout)
failed_keys = self._client.set_multi(
new_mapping, timeout
) # type: _t.List[_t.Any]
k_normkey = zip(mapping.keys(), new_mapping.keys()) # noqa: B905
return [k for k, nkey in k_normkey if nkey not in failed_keys]
def delete(self, key: str) -> bool:
key = self._normalize_key(key)
if _test_memcached_key(key):
return bool(self._client.delete(key))
return False
def delete_many(self, *keys: str) -> _t.List[_t.Any]:
new_keys = []
for key in keys:
key = self._normalize_key(key)
if _test_memcached_key(key):
new_keys.append(key)
self._client.delete_multi(new_keys)
return [k for k in new_keys if not self.has(k)]
def has(self, key: str) -> bool:
key = self._normalize_key(key)
if _test_memcached_key(key):
return bool(self._client.append(key, ""))
return False
def clear(self) -> bool:
return bool(self._client.flush_all())
def inc(self, key: str, delta: int = 1) -> _t.Optional[int]:
key = self._normalize_key(key)
value = (self._client.get(key) or 0) + delta
return value if self.set(key, value) else None
def dec(self, key: str, delta: int = 1) -> _t.Optional[int]:
key = self._normalize_key(key)
value = (self._client.get(key) or 0) - delta
return value if self.set(key, value) else None
def import_preferred_memcache_lib(self, servers: _t.Any) -> _t.Any:
"""Returns an initialized memcache client. Used by the constructor."""
try:
import pylibmc # type: ignore
except ImportError:
pass
else:
return pylibmc.Client(servers)
try:
from google.appengine.api import memcache # type: ignore
except ImportError:
pass
else:
return memcache.Client()
try:
import memcache # type: ignore
except ImportError:
pass
else:
return memcache.Client(servers)
try:
import libmc # type: ignore
except ImportError:
pass
else:
return libmc.Client(servers)