384 lines
13 KiB
Python
384 lines
13 KiB
Python
|
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
|
||
|
# For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt
|
||
|
|
||
|
"""Results of coverage measurement."""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import collections
|
||
|
|
||
|
from typing import Callable, Dict, Iterable, List, Optional, Tuple, TYPE_CHECKING
|
||
|
|
||
|
from coverage.debug import AutoReprMixin
|
||
|
from coverage.exceptions import ConfigError
|
||
|
from coverage.misc import nice_pair
|
||
|
from coverage.types import TArc, TLineNo
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from coverage.data import CoverageData
|
||
|
from coverage.plugin import FileReporter
|
||
|
|
||
|
|
||
|
class Analysis:
|
||
|
"""The results of analyzing a FileReporter."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
data: CoverageData,
|
||
|
precision: int,
|
||
|
file_reporter: FileReporter,
|
||
|
file_mapper: Callable[[str], str],
|
||
|
) -> None:
|
||
|
self.data = data
|
||
|
self.file_reporter = file_reporter
|
||
|
self.filename = file_mapper(self.file_reporter.filename)
|
||
|
self.statements = self.file_reporter.lines()
|
||
|
self.excluded = self.file_reporter.excluded_lines()
|
||
|
|
||
|
# Identify missing statements.
|
||
|
executed: Iterable[TLineNo]
|
||
|
executed = self.data.lines(self.filename) or []
|
||
|
executed = self.file_reporter.translate_lines(executed)
|
||
|
self.executed = executed
|
||
|
self.missing = self.statements - self.executed
|
||
|
|
||
|
if self.data.has_arcs():
|
||
|
self._arc_possibilities = sorted(self.file_reporter.arcs())
|
||
|
self.exit_counts = self.file_reporter.exit_counts()
|
||
|
self.no_branch = self.file_reporter.no_branch_lines()
|
||
|
n_branches = self._total_branches()
|
||
|
mba = self.missing_branch_arcs()
|
||
|
n_partial_branches = sum(len(v) for k,v in mba.items() if k not in self.missing)
|
||
|
n_missing_branches = sum(len(v) for k,v in mba.items())
|
||
|
else:
|
||
|
self._arc_possibilities = []
|
||
|
self.exit_counts = {}
|
||
|
self.no_branch = set()
|
||
|
n_branches = n_partial_branches = n_missing_branches = 0
|
||
|
|
||
|
self.numbers = Numbers(
|
||
|
precision=precision,
|
||
|
n_files=1,
|
||
|
n_statements=len(self.statements),
|
||
|
n_excluded=len(self.excluded),
|
||
|
n_missing=len(self.missing),
|
||
|
n_branches=n_branches,
|
||
|
n_partial_branches=n_partial_branches,
|
||
|
n_missing_branches=n_missing_branches,
|
||
|
)
|
||
|
|
||
|
def missing_formatted(self, branches: bool = False) -> str:
|
||
|
"""The missing line numbers, formatted nicely.
|
||
|
|
||
|
Returns a string like "1-2, 5-11, 13-14".
|
||
|
|
||
|
If `branches` is true, includes the missing branch arcs also.
|
||
|
|
||
|
"""
|
||
|
if branches and self.has_arcs():
|
||
|
arcs = self.missing_branch_arcs().items()
|
||
|
else:
|
||
|
arcs = None
|
||
|
|
||
|
return format_lines(self.statements, self.missing, arcs=arcs)
|
||
|
|
||
|
def has_arcs(self) -> bool:
|
||
|
"""Were arcs measured in this result?"""
|
||
|
return self.data.has_arcs()
|
||
|
|
||
|
def arc_possibilities(self) -> List[TArc]:
|
||
|
"""Returns a sorted list of the arcs in the code."""
|
||
|
return self._arc_possibilities
|
||
|
|
||
|
def arcs_executed(self) -> List[TArc]:
|
||
|
"""Returns a sorted list of the arcs actually executed in the code."""
|
||
|
executed: Iterable[TArc]
|
||
|
executed = self.data.arcs(self.filename) or []
|
||
|
executed = self.file_reporter.translate_arcs(executed)
|
||
|
return sorted(executed)
|
||
|
|
||
|
def arcs_missing(self) -> List[TArc]:
|
||
|
"""Returns a sorted list of the un-executed arcs in the code."""
|
||
|
possible = self.arc_possibilities()
|
||
|
executed = self.arcs_executed()
|
||
|
missing = (
|
||
|
p for p in possible
|
||
|
if p not in executed
|
||
|
and p[0] not in self.no_branch
|
||
|
and p[1] not in self.excluded
|
||
|
)
|
||
|
return sorted(missing)
|
||
|
|
||
|
def arcs_unpredicted(self) -> List[TArc]:
|
||
|
"""Returns a sorted list of the executed arcs missing from the code."""
|
||
|
possible = self.arc_possibilities()
|
||
|
executed = self.arcs_executed()
|
||
|
# Exclude arcs here which connect a line to itself. They can occur
|
||
|
# in executed data in some cases. This is where they can cause
|
||
|
# trouble, and here is where it's the least burden to remove them.
|
||
|
# Also, generators can somehow cause arcs from "enter" to "exit", so
|
||
|
# make sure we have at least one positive value.
|
||
|
unpredicted = (
|
||
|
e for e in executed
|
||
|
if e not in possible
|
||
|
and e[0] != e[1]
|
||
|
and (e[0] > 0 or e[1] > 0)
|
||
|
)
|
||
|
return sorted(unpredicted)
|
||
|
|
||
|
def _branch_lines(self) -> List[TLineNo]:
|
||
|
"""Returns a list of line numbers that have more than one exit."""
|
||
|
return [l1 for l1,count in self.exit_counts.items() if count > 1]
|
||
|
|
||
|
def _total_branches(self) -> int:
|
||
|
"""How many total branches are there?"""
|
||
|
return sum(count for count in self.exit_counts.values() if count > 1)
|
||
|
|
||
|
def missing_branch_arcs(self) -> Dict[TLineNo, List[TLineNo]]:
|
||
|
"""Return arcs that weren't executed from branch lines.
|
||
|
|
||
|
Returns {l1:[l2a,l2b,...], ...}
|
||
|
|
||
|
"""
|
||
|
missing = self.arcs_missing()
|
||
|
branch_lines = set(self._branch_lines())
|
||
|
mba = collections.defaultdict(list)
|
||
|
for l1, l2 in missing:
|
||
|
if l1 in branch_lines:
|
||
|
mba[l1].append(l2)
|
||
|
return mba
|
||
|
|
||
|
def executed_branch_arcs(self) -> Dict[TLineNo, List[TLineNo]]:
|
||
|
"""Return arcs that were executed from branch lines.
|
||
|
|
||
|
Returns {l1:[l2a,l2b,...], ...}
|
||
|
|
||
|
"""
|
||
|
executed = self.arcs_executed()
|
||
|
branch_lines = set(self._branch_lines())
|
||
|
eba = collections.defaultdict(list)
|
||
|
for l1, l2 in executed:
|
||
|
if l1 in branch_lines:
|
||
|
eba[l1].append(l2)
|
||
|
return eba
|
||
|
|
||
|
def branch_stats(self) -> Dict[TLineNo, Tuple[int, int]]:
|
||
|
"""Get stats about branches.
|
||
|
|
||
|
Returns a dict mapping line numbers to a tuple:
|
||
|
(total_exits, taken_exits).
|
||
|
"""
|
||
|
|
||
|
missing_arcs = self.missing_branch_arcs()
|
||
|
stats = {}
|
||
|
for lnum in self._branch_lines():
|
||
|
exits = self.exit_counts[lnum]
|
||
|
missing = len(missing_arcs[lnum])
|
||
|
stats[lnum] = (exits, exits - missing)
|
||
|
return stats
|
||
|
|
||
|
|
||
|
class Numbers(AutoReprMixin):
|
||
|
"""The numerical results of measuring coverage.
|
||
|
|
||
|
This holds the basic statistics from `Analysis`, and is used to roll
|
||
|
up statistics across files.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
precision: int = 0,
|
||
|
n_files: int = 0,
|
||
|
n_statements: int = 0,
|
||
|
n_excluded: int = 0,
|
||
|
n_missing: int = 0,
|
||
|
n_branches: int = 0,
|
||
|
n_partial_branches: int = 0,
|
||
|
n_missing_branches: int = 0,
|
||
|
) -> None:
|
||
|
assert 0 <= precision < 10
|
||
|
self._precision = precision
|
||
|
self._near0 = 1.0 / 10**precision
|
||
|
self._near100 = 100.0 - self._near0
|
||
|
self.n_files = n_files
|
||
|
self.n_statements = n_statements
|
||
|
self.n_excluded = n_excluded
|
||
|
self.n_missing = n_missing
|
||
|
self.n_branches = n_branches
|
||
|
self.n_partial_branches = n_partial_branches
|
||
|
self.n_missing_branches = n_missing_branches
|
||
|
|
||
|
def init_args(self) -> List[int]:
|
||
|
"""Return a list for __init__(*args) to recreate this object."""
|
||
|
return [
|
||
|
self._precision,
|
||
|
self.n_files, self.n_statements, self.n_excluded, self.n_missing,
|
||
|
self.n_branches, self.n_partial_branches, self.n_missing_branches,
|
||
|
]
|
||
|
|
||
|
@property
|
||
|
def n_executed(self) -> int:
|
||
|
"""Returns the number of executed statements."""
|
||
|
return self.n_statements - self.n_missing
|
||
|
|
||
|
@property
|
||
|
def n_executed_branches(self) -> int:
|
||
|
"""Returns the number of executed branches."""
|
||
|
return self.n_branches - self.n_missing_branches
|
||
|
|
||
|
@property
|
||
|
def pc_covered(self) -> float:
|
||
|
"""Returns a single percentage value for coverage."""
|
||
|
if self.n_statements > 0:
|
||
|
numerator, denominator = self.ratio_covered
|
||
|
pc_cov = (100.0 * numerator) / denominator
|
||
|
else:
|
||
|
pc_cov = 100.0
|
||
|
return pc_cov
|
||
|
|
||
|
@property
|
||
|
def pc_covered_str(self) -> str:
|
||
|
"""Returns the percent covered, as a string, without a percent sign.
|
||
|
|
||
|
Note that "0" is only returned when the value is truly zero, and "100"
|
||
|
is only returned when the value is truly 100. Rounding can never
|
||
|
result in either "0" or "100".
|
||
|
|
||
|
"""
|
||
|
return self.display_covered(self.pc_covered)
|
||
|
|
||
|
def display_covered(self, pc: float) -> str:
|
||
|
"""Return a displayable total percentage, as a string.
|
||
|
|
||
|
Note that "0" is only returned when the value is truly zero, and "100"
|
||
|
is only returned when the value is truly 100. Rounding can never
|
||
|
result in either "0" or "100".
|
||
|
|
||
|
"""
|
||
|
if 0 < pc < self._near0:
|
||
|
pc = self._near0
|
||
|
elif self._near100 < pc < 100:
|
||
|
pc = self._near100
|
||
|
else:
|
||
|
pc = round(pc, self._precision)
|
||
|
return "%.*f" % (self._precision, pc)
|
||
|
|
||
|
def pc_str_width(self) -> int:
|
||
|
"""How many characters wide can pc_covered_str be?"""
|
||
|
width = 3 # "100"
|
||
|
if self._precision > 0:
|
||
|
width += 1 + self._precision
|
||
|
return width
|
||
|
|
||
|
@property
|
||
|
def ratio_covered(self) -> Tuple[int, int]:
|
||
|
"""Return a numerator and denominator for the coverage ratio."""
|
||
|
numerator = self.n_executed + self.n_executed_branches
|
||
|
denominator = self.n_statements + self.n_branches
|
||
|
return numerator, denominator
|
||
|
|
||
|
def __add__(self, other: Numbers) -> Numbers:
|
||
|
nums = Numbers(precision=self._precision)
|
||
|
nums.n_files = self.n_files + other.n_files
|
||
|
nums.n_statements = self.n_statements + other.n_statements
|
||
|
nums.n_excluded = self.n_excluded + other.n_excluded
|
||
|
nums.n_missing = self.n_missing + other.n_missing
|
||
|
nums.n_branches = self.n_branches + other.n_branches
|
||
|
nums.n_partial_branches = (
|
||
|
self.n_partial_branches + other.n_partial_branches
|
||
|
)
|
||
|
nums.n_missing_branches = (
|
||
|
self.n_missing_branches + other.n_missing_branches
|
||
|
)
|
||
|
return nums
|
||
|
|
||
|
def __radd__(self, other: int) -> Numbers:
|
||
|
# Implementing 0+Numbers allows us to sum() a list of Numbers.
|
||
|
assert other == 0 # we only ever call it this way.
|
||
|
return self
|
||
|
|
||
|
|
||
|
def _line_ranges(
|
||
|
statements: Iterable[TLineNo],
|
||
|
lines: Iterable[TLineNo],
|
||
|
) -> List[Tuple[TLineNo, TLineNo]]:
|
||
|
"""Produce a list of ranges for `format_lines`."""
|
||
|
statements = sorted(statements)
|
||
|
lines = sorted(lines)
|
||
|
|
||
|
pairs = []
|
||
|
start = None
|
||
|
lidx = 0
|
||
|
for stmt in statements:
|
||
|
if lidx >= len(lines):
|
||
|
break
|
||
|
if stmt == lines[lidx]:
|
||
|
lidx += 1
|
||
|
if not start:
|
||
|
start = stmt
|
||
|
end = stmt
|
||
|
elif start:
|
||
|
pairs.append((start, end))
|
||
|
start = None
|
||
|
if start:
|
||
|
pairs.append((start, end))
|
||
|
return pairs
|
||
|
|
||
|
|
||
|
def format_lines(
|
||
|
statements: Iterable[TLineNo],
|
||
|
lines: Iterable[TLineNo],
|
||
|
arcs: Optional[Iterable[Tuple[TLineNo, List[TLineNo]]]] = None,
|
||
|
) -> str:
|
||
|
"""Nicely format a list of line numbers.
|
||
|
|
||
|
Format a list of line numbers for printing by coalescing groups of lines as
|
||
|
long as the lines represent consecutive statements. This will coalesce
|
||
|
even if there are gaps between statements.
|
||
|
|
||
|
For example, if `statements` is [1,2,3,4,5,10,11,12,13,14] and
|
||
|
`lines` is [1,2,5,10,11,13,14] then the result will be "1-2, 5-11, 13-14".
|
||
|
|
||
|
Both `lines` and `statements` can be any iterable. All of the elements of
|
||
|
`lines` must be in `statements`, and all of the values must be positive
|
||
|
integers.
|
||
|
|
||
|
If `arcs` is provided, they are (start,[end,end,end]) pairs that will be
|
||
|
included in the output as long as start isn't in `lines`.
|
||
|
|
||
|
"""
|
||
|
line_items = [(pair[0], nice_pair(pair)) for pair in _line_ranges(statements, lines)]
|
||
|
if arcs is not None:
|
||
|
line_exits = sorted(arcs)
|
||
|
for line, exits in line_exits:
|
||
|
for ex in sorted(exits):
|
||
|
if line not in lines and ex not in lines:
|
||
|
dest = (ex if ex > 0 else "exit")
|
||
|
line_items.append((line, f"{line}->{dest}"))
|
||
|
|
||
|
ret = ", ".join(t[-1] for t in sorted(line_items))
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def should_fail_under(total: float, fail_under: float, precision: int) -> bool:
|
||
|
"""Determine if a total should fail due to fail-under.
|
||
|
|
||
|
`total` is a float, the coverage measurement total. `fail_under` is the
|
||
|
fail_under setting to compare with. `precision` is the number of digits
|
||
|
to consider after the decimal point.
|
||
|
|
||
|
Returns True if the total should fail.
|
||
|
|
||
|
"""
|
||
|
# We can never achieve higher than 100% coverage, or less than zero.
|
||
|
if not (0 <= fail_under <= 100.0):
|
||
|
msg = f"fail_under={fail_under} is invalid. Must be between 0 and 100."
|
||
|
raise ConfigError(msg)
|
||
|
|
||
|
# Special case for fail_under=100, it must really be 100.
|
||
|
if fail_under == 100.0 and total != 100.0:
|
||
|
return True
|
||
|
|
||
|
return round(total, precision) < fail_under
|